
LLNL-CONF-426270

AutomaDeD: Automata-Based
Debugging for Dissimilar Parallel
Tasks

Greg Bronevetsky, Ignacio Laguna, Saurabh
Bagchi, Bronis R. de Supinski, Dong Ahn, Martin
Schulz

March 24, 2010

International Conference on Dependable Systems and
Networks
Chicago, IL, United States
June 28, 2010 through July 1, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

AutomaDeD: Automata-Based Debugging for Dissimilar Parallel Tasks ∗

Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi, Bronis R. de Supinski, Dong H. Ahn, and Martin Schulz

Abstract

Today’s largest systems have over 100,000 cores, with
million-core systems expected over the next few years. This
growing scale makes debugging the applications that run
on them a daunting challenge. Few debugging tools per-
form well at this scale and most provide an overload of
information about the entire job. Developers need tools
that quickly direct them to the root cause of the problem.
This paper presents AutomaDeD, a tool that identifies which
tasks of a large-scale application first manifest a bug at a
specific code region at a specific point during program ex-
ecution. AutomaDeD creates a statistical model of the ap-
plication’s control-flow and timing behavior that organizes
tasks into groups and identifies deviations from normal ex-
ecution, thus significantly reducing debugging effort. In ad-
dition to a case study in which AutomaDeD locates a bug
that occurred during development of MVAPICH, we evalu-
ate AutomaDeD on a range of bugs injected into the NAS
parallel benchmarks. Our results demonstrate that detects
the time period when a bug first manifested itself with 90%
accuracy for stalls and hangs and 70% accuracy for inter-
ference faults. It identifies the subset of processes first af-
fected by the fault with 80% accuracy and 70% accuracy,
respectively and the code region where where the fault first
manifested with 90% and 50% accuracy, respectively.

1 Introduction

The number of cores used in large scale systems already
exceeds million cores in the near future [7]. As a result,
the challenge of developing correct, high performance ap-
plications is also growing. When an application does not
complete or completes with incorrect results, the developer
must identify the offending MPI task and then the portion of
the code in that task that caused the error. Traditional paral-
lel debugging tools [12, 14, 18, 23] often perform poorly at
large task counts. We focus on developing a detection tool

∗This work partially performed under the auspices of the U.S.Depart-
ment of Energy by Lawrence Livermore National Laboratory under Con-
tract DE-AC52-07NA27344. (LLNL-CONF-xxxxxx). The work ofthe
Purdue authors was partially supported by the National Science Founda-
tion under grant CSR-0916337.

set that identifies the offending task and, to a customizable
granularity, the relevant portion of code within the task.

We present AutomaDeD, a tool set that achieves this goal
of focusing debugging efforts to improve developer effi-
ciency. It performs runtime monitoring of a parallel appli-
cation to build a statistical model of the application’s typical
timing and control flow behavior. The typical use case for
AutomaDeD is that a user suspects a run of an application
is erroneous and would like to get some guidance to what
parts of the application code to focus on for debugging. Au-
tomaDeD achieves this by identifying the period in time, the
task(s), and theerror site, the region of code, where a fault
first manifests itself. Thus, AutomaDeD provides the basis
for eventual root cause diagnosis including identificationof
the exact erroneous line of source code.

This paper makes technical contributions intwo broad
areas. First, we describea model to characterize the behav-
ior of parallel applications. Second, we present methods
thatcompare the behavior of tasks in a parallel application
in time and in spaceto identify the error site. AutomaDeD
models the the control flow and timing behavior of appli-
cation tasks asSemi-Markov Models (SMMs)and detects
faults that affect these behaviors. States of these SMMs
represent regions of application code and edges represent
execution progress from one region to another. SMMs cap-
ture the probability of transitioning from one region to an-
other and the distribution of times spent in each region.
We delimit code regions by MPI calls and use MPI calls
(along with call stack information) and the computation in-
terleaved between them as two different kinds of states in
SMMs.

AutomaDeD examines how each task’s SMM changes
over time and relates to the SMMs of other tasks to iden-
tify the task and code region where a given fault is first
manifested. First, AutomaDeD detects which time period
in the execution of the application is likely erroneous. Au-
tomaDeD then clusters task SMMs of that period, and per-
formscluster isolation, which uses a novel similarity mea-
sure to identify the task(s) suffering from the fault. Finally,
transition isolationdetects the transitions that were affected
by the fault more strongly or earlier than others, thus iden-
tifying the code region where the fault is first manifested.
In addition to focusing the developer on the root cause of
their bug, AutomaDeD also enables the use of traditional

1

Offline User: Phases Annotation

Application
Task1 Task2 Taskn. . .

PNMPI Profiler

SMM1 SMM2 SMMn. . .

Online

Offline
Clustering

Abnormal Tasks
Abnormal Phases

Characteristic Transitions

Figure 1. Design of AutomaDeD

debuggers, such as gdb and TotalView [23] at previously
infeasible scales by focusing them on the time period, tasks
and code regions that are most likely to have a bug.

Our evaluation injects synthetic errors into six applica-
tions from the NAS Parallel Benchmark (NPB) suite [5] at
random time points and in randomly chosen tasks. The er-
rors include delays, hangs in application tasks, interference
due to execution of an extra CPU- or memory-intensive
thread on an application compute node and message drops
and duplication. Our results demonstrate that AutomaDeD
correctly identifies the time period that is likely erroneous in
90% of our trials for delays, hangs and message faults and
in 70% of our trials for interference faults. Given the cor-
rect time period, AutomaDeD’s cluster isolation achieves
over 80% accuracy for delays and hangs, 40% for message
faults and 70% accuracy for interference faults. Given the
correct cluster, it isolates the injected transition with 90%
accuracy for delays and hangs and 50% accuracy for inter-
ference faults.

The rest of the paper is organized as follows. Section 2
presents our overall approach, while Section 3 looks at the
details of our application behavior modeling methodology.
We describe the analysis performed by AutomaDeD in Sec-
tion 4 and present our experimental evaluation in Section 5.

2 Approach

As Figure 1 shows, AutomaDeD consists of both on-
line and off-line mechanisms. An on-line mechanism gath-
ers data about executions into an SMM database. Au-
tomaDeD’s off-line mechanisms then use this data to derive
a deeper understanding of the application behavior, particu-
larly when bugs are manifested.

Figure 2. Example of a Semi-Markov Model

Figure 3. Problem-size reduction with AutomaDeD

2.1 Semi-Markov Models

We model the control flow and timing properties of ap-
plication tasks in order to debug common anomalies. We
track control flow as a sequence of application states, de-
fined as MPI calls (including their arguments and call stack)
or the computation interleaved between them. We maintain
the amount of time each task spends in each state to cap-
ture temporal aspects of the states. Given the expense of
maintaining full traces, we model task behavior as aSemi-
Markov Model(SMM), a finite automaton of task states and
transitions where the task spends a random amount of time
in each state and randomly selects its next transition with no
dependence on its history.

Figure 2 shows a sample SMM with edges labeled by the
probability of transitioning from one state to another and the
probability distribution of the time preceding the transition.
In the above SMM, tasks in stateS3 transition to stateS1

40% of the time and toS2 the other 60%, with the times that
precede the transitions sampled from distributionsF3,1 and
F3,2, respectively. We compute the SMM states, transitions
and probability distributions from program traces captured
on-line by a PnMPI-based wrapper library [20] that inter-
cepts all calls to MPI functions. We use the observed nor-
malized frequency of each transition as its transition prob-
ability. Section 3.1 explains how we derive time distribu-
tions.

2.2 Overview of Analysis

The SMM abstraction couples the dynamic execution of
an application with distinct regions of its code. Thus, we
can focus the developer’s attention on the tasks and regions
of code that are behaving anomalously. Figure 3 shows the
several stages in which we accomplish this goal. First, we
divide the application’s execution into a series of time pe-
riods calledphases. Naturally, applications behave accord-
ing to a repetitive pattern for periods of time and then their
behavior changes, to a different repetitive pattern or some
random pattern. We divide the period of time of repetitive
behavior into smaller time periods, which we call phases.

2

Thus, across the phases within one repetitive pattern bound-
ary, we expect the application behavior to be statistically
identical. AutomaDeD then computes an SMM for each
task within each phase and then clusters the SMMs for each
phase. This clustering may partition the tasks based on cor-
rect differences between them, such as with master-slave
applications that have two correct partitions. Alternatively,
it may identify behavioral differences due to a bug. Au-
tomaDeD either compares a task’s SMMs from different
phases or the task clustering from different phases to de-
termine the phase during which a bug is first manifested. It
can also compare SMMs or their clusterings to those from
prior, correct executions. If no sample runs are available,
AutomaDeD calibrates its bug detection algorithms based
on the first phase, which works well in practice because we
target rare, hard to find bugs, which manifest themselves
after a few iterations of the main processing loop.

Once AutomaDeD identifies a faulty phase, it proceeds
to identify the task cluster or individual task in which the
bug is first manifested. AutomaDeD compares SMMs or
clusters across phases to identify the SMM or cluster that
has changed the most from the normal phases. AutomaDeD
can again use SMMs or clusters from prior, correct execu-
tions or earlier phases of the same execution. AutomaDeD
also compares the individual state transitions within the
faulty phase to find the first unusual transition, which may
identify the error site. Alternatively, the most unusual SMM
transition of the faulty task may identify it.

Thus, AutomaDeD iteratively focuses the developer’s
debugging efforts. First, it identifies the faulty execution
phase. Then it finds the faulty task or group of tasks. Fi-
nally, it locates the error site. The granularity of this iden-
tification is a state in the SMM. Thus, AutomaDeDdoes
not identify the root cause of the error and cannot identify
the manifestation to a very fine granularity, such as line of
code. However, it does significantly reduce the amount of
information that must be considered when performing a root
cause analysis.

3 SMM Mechanisms

3.1 Creating Time Distributions

We consider two methods for deriving the time proba-
bility distributions that explain the time spent by a task in
the SMM states. In one, we assume that the time values
follow a Gaussian distribution. In the other, we compute a
histogram of ranges of the observed time values, instead of
assuming a particular distribution.

Assuming Gaussian distribution has several advantages.
First, we can easily calculate the parameters of a Gaus-
sian distribution given enough sample points. By using
maximum-likelihood estimation, we only need to calculate

Time Values

Time Values

Histogram
Bucket
Counts

Data
Samples

Gaussian Tail

Line Connectors

Figure 4. Example of histogram construction

the mean and standard deviation of the data points. Second,
it is a well-known distribution with a rich theory. However,
a Gaussian distribution is not appropriate for state transi-
tions that have multi-modal or asymmetric behavior. The
former can occur when different code within a compute re-
gion is executed at different times and the latter occurs when
the time that precedes a transition is consistent except for
spikes due to system or network interference.

Histograms provide a more detailed fit to the observed
data. The basic approach, which Figure 4 shows, divides
the observed data points into a number of equal-sized buck-
ets. The probability of a particular bucket is the fraction of
data points within it. Since timing data may have outliers
orders or magnitude above the median, equal-sized buckets
can aggregate most data points into a single bucket, pro-
viding poor resolution. We therefore used variable-sized
buckets via an online clustering algorithm. We assign each
new data point to its own bucket. If the resulting number of
buckets rises above a threshold, we merge the two buckets
with the closest means. We derive a continuous probabil-
ity distribution from the discrete histogram by linearly con-
necting adjoining bucket counts and modeling the regions
beyond the smallest and largest buckets using the lower and
upper halves of Gaussian distributions, which models the
probability of observing new extreme values.

The basic tradeoff between these two distributions is that
Gaussians are cheaper (in terms of computation and mem-
ory cost to create and to query) and more constrained while
histograms are more expensive but very flexible. Evaluating
both options provides significant information about the ba-
sic tradeoffs of this design parameter, thus illuminating the
potential of other statistical models such as mixed-Gaussian
distributions and Kernel Density Methods [21].

3.2 Comparing Task SMMs

AutomaDeD detects faulty phases and tasks and per-
forms task clustering by comparing SMMs to each other.
We define an SMM distance metric that reflects the differ-
ences between the control flow and timing behaviors of their
respective tasks. The difference between two SMMs is the
sum of the differences in their transition probabilities and
transition time distributions.

3

Given two SMMsA andB, let SA andSB be their sets
of states, andTA andTB be their sets of transitions. Also let
ds,i be the state transition probability distribution for state
s ∈ Si, and letdt,i be the time probability distribution for
transitiont ∈ Ti. The difference betweenA andB is:

Diff(A,B) =
∑

s∈S

D(ds,A, ds,B) +
1

ν

∑

t∈T

D(dt,A, dt,B)

whereS = SA ∪ SB, T = TA ∪ TB, D(dr,A, dr,B) is the
difference between a pair of probability distributionsdr,A
anddr,B , wherer is a state or transition.ν corresponds to
a weighting factor defined in Section 3.3 that weighs differ-
ences on transitions with consistent timing behavior above
those with poor information content. We define the metric
D(dr,A, dr,B) as:

D(dr,A, dr,B) =

{

L2(dr,A, dr,B) ∗ α if r ∈ A andr ∈ B
10 otherwise

L2(dr,A, dr,B) is the L2 norm between the
probability distributions [15], L2(dr,A, dr,B) =
∫∞

−∞
|dr,A(j)− dr,B(j)|

2dj. The integral is over the
space of possible events (state transitions or transition
times).The parameterα gives greater weight to differences
in time distribution with distant means,µd andµd′ . For
time distributions it is equal to

α = 1 +
|µdr,A

− µdr,B
|2

(µdr,A
+ µdr,B

)/2

andα = 1 for state transition distributions.
In most casesD(dr,A, dr,B) is below 10 for transitions

and statesr that appear in bothA andB. As such, ifr ap-
pears in one but not the other,D(dr,A, dr,B) was set to 10
to make differences in application control flow more signif-
icant than differences in its timing behavior.

3.3 Normalized SMM Comparison

Different SMM transitions will have very different tim-
ing properties, with a variety of means, standard deviations
and distribution shapes. Differences between SMMs on a
transition that has consistent timing and a tightly focused
distribution can be very informative. In contrast, if the tran-
sition is noisy, the differences are most likely due to sys-
tem interference. AutomaDeD focuses on the critical dif-
ferences between two SMMs by looking at the “normal”
difference between the SSMs of a sample set and weighting
D(dt,A, dt,B) accordingly. Thus, given a transitiont and a
setM of sample SMMs, we define the weighting factorν
as the root-mean-square ofD on this transition among the
members ofM :

ν =

√

∑

A,B∈M,A 6=B D(dt,A, dt,B)2

|pairs(t,M)|

where|pairs(t,M)| is the number of SMM pairs inM that
both have transitiont. In the absence of sample runs,ν for
a given transition in a given phase of the faulty run is com-
puted by summing over SMMs in the run’s other phases.

This weighting scheme overcomes a commonly ob-
served effect where certain transitions have multi-modal
timing characteristics—very consistent timing behavior
within each mode and sudden shifts to a different mode ei-
ther within a given run or across multiple runs. This may be
caused for example by a computation that executes the same
set of instructions but takes very different times depending
on whether the data is cached or not. For such behavior, the
value ofν will be high, thereby weighing down the differ-
ence metricD.

3.4 Clustering Tasks’ Models

AutomaDeD detects behavioral clusters by using Hierar-
chical Agglomerative Clustering (HAC) [10] on the SMMs
of all application tasks. HAC initially sets each task to be
in its own cluster. During each iteration, HAC merges the
two most similar clusters into a single cluster, so that it has
one cluster less after that iteration. Cluster difference is de-
fined as the smallest difference between any member of one
cluster to any member of the other cluster. These steps are
repeated until the minimum difference between any pair of
clusters is above a given threshold (i.e., no two clusters are
similar enough to merge).

HAC requires a threshold that defines the normal differ-
ence of similar tasks. AutomaDeD chooses this threshold
by having the developer provide the number of clusters that
accurately describe the application’s expected behavior.For
example, a relaxation algorithm with non-periodic bound-
aries operating on an 2-dimensional grid is best described
by a 9 clusters (one for the interior, and one for each side
and each corner region). However, it should have a single
cluster if the boundaries are periodic. AutomaDeD applies
HAC on SMMs of a set of training phases (assumed to have
few bugs), identifying the average threshold that produces
the desired number of clusters. We use this threshold for
subsequent clustering. If sample runs of the application are
provided, AutomaDeD trains on phases in these runs. Oth-
erwise, it trains on the given run’s first phase, which we
assumed is fault-free.

The resulting clustering organizes tasks into behavioral
groups that reflect the effect of the bug on the application’s
behavior. This helps to identify the time and the location
when the fault was first manifested.

4 Error Detection Procedure

We describe the procedure that a user employs to isolate
a bug using AutomaDeD. Figure 1 shows the complete se-

4

quence of steps.On-linesteps occur when the program ex-
ecutes, whileoff-line steps occur after execution. The next
sections describe each step.

4.1 Phases and Epochs

AutomaDeD models the behavior of discrete regions
of application execution that the developer identifies via
source code markers. The termphasedenotes a region of
execution, such as a time step, that repeats multiple times.
Phases are grouped intophase sets, where all phases in
a set are assumed to behave similarly to each other. For ex-
ample, adaptive mesh refinement applications periodically
re-partition their work and meshes. Thus, individual itera-
tions may be identified as phases while iterations between
adjacent re-partitionings may be grouped into a set. Devel-
opers annotate phases and phase sets in their code by adding
calls toMPI Pcontrol, a special function call that is in-
tercepted by our wrapper library.

4.2 Faulty Phase Detection

AutomaDeD detects the phase during which a fault was
first manifested using one of two algorithms, depending on
how it effects application behavior. Currently the user of
AutomaDeD must try both faulty phase selection mecha-
nisms. We leave automation of this selection to future work.

If the effects are temporary (e.g., temporary delay due to
unusual erroneous control flow), AutomaDeD searches for
the phase that differs from all other phases. If AutomaDeD
has a set of sample runs, it compares each phase to its coun-
terparts in those runs. It can either compare each task’s
SMM directly to its sample counterpart or it may compare
each phase’s clustering to the clustering of its counterpart
phase. For the former we use the SMM difference metric
from Section 3.2, with the difference between two phases
defined as the squared sum of the differences between their
respective task SMMs. For the latter we use the Mirkin dif-
ference metric [17], which is the fraction of task pairs that
are grouped differently in the two clusterings, (i.e., tasks
T1 andT2 are in the same cluster in one clustering and not
in the same cluster in the second, or vice-versa). Then for
each phase we compute a “deviation score”, which is the
sum of the squared distances from this phase in the faulty
run to the same phase in the sample runs. We identify the
phase with the highest deviation score as faulty. If no sam-
ple runs are provided, AutomaDeD compares each phase to
all others within the faulty run using either of the above met-
rics to compute each phase’s deviation score. We identify
the phase that differs most from the others as faulty. When
sample runs are provided,ν weighting terms are computed
from the SMMs of these runs. When they are not provided,
theν used for each phase’s comparisons is computed from

the other phases in the faulty run.
If the effects are permanent (e.g., a runaway thread that

interferes with the application), AutomaDeD identifies the
phase when application behavior shifted. If AutomaDeD
has sample runs, it computes deviation scores as above but
then uses k-Means Clustering [10] to divide the phases into
two clusters: those that are similar to the sample runs (low
deviation) and those that are different (high deviation). We
identify the earliest phase in the high deviation cluster as
faulty. Without sample runs, AutomaDeD identifies the
pair of adjacent phases that are most different according the
SMM or clustering difference metrics. The later phase in
this pair is judged to be faulty.

4.3 Pinpointing Faulty Task(s) and Error
Sites Using SMM Analysis

AutomaDeD provides two complementary mechanisms
to identify the faulty task(s) and the error site. We describe
the first mechanism, which compares SMMs and cluster-
ings, here. We discuss the second, which is based on in-
dividual transitions, in Section 4.4. Successful identifica-
tion of the faulty cluster greatly simplifies determining the
root cause. Cluster isolation is particularly helpful whenthe
manifestation of a bug results in a cluster with a single task.

AutomaDeD clusters the tasks of the faulty phase and
then identifies the most unusual cluster by computing its
deviation from the other clusters. If we have a set of sample
runs, we compare each cluster to them using the SMM or
clustering difference metric (comparison is focused on the
phase identified as faulty). The SMM cluster difference is
simply the sum of the squared SMM differences between
the SMMs of member tasks in the faulty phase and their
SMMs in the same phase of a given sample run, divided by
the number of tasks. The clustering difference metric is a
variant of the Mirkin difference where the deviation from
sample phase clusteringC′ = {c′

1
, ...c′n} of test clusterc is

the fraction of its member task pairs that appear in differ-
ent clusters inC′. Each cluster’s overall deviation score is
then the squared sum of its differences with respect all the
sample runs. If no sample runs are provided each cluster is
compared as above but to the other phases of the faulty run
instead of the same phase of the sample runs.

We also locate the error site based on task clustering
when we identify thecharacteristic transition(CT), the
transition that most distinguishes the faulty cluster fromthe
other clusters. Since bugs can cause these behavioral differ-
ences, CTs direct developers to the root cause.

For SMMs A and B, we defineCT (A,B) as (t, χ)
wheret is transition that most contributes to the dissimilar-
ity metricDiff(A,B) andχ is the magnitude of this con-
tribution. Given a clusterc = {M1,M2, ...,Mn}, we com-
pute the cluster’s CT by evaluatingCT (Mi,M

′
j) for each

5

pair (Mi ∈ c, M ′
j /∈ c). The CT ofc is then the transition

that is the CT of the most SMM pairs. If this selects more
than one transition, the CT is transition with the largest av-
erage contribution magnitude. Since this method does not
always produce the correct faulty transition as the top CT,
AutomaDeD can also present the top several choices to the
developer for closer examination.

4.4 Detection Using Transition Analysis

Our SMM-based cluster and transition isolation methods
are too coarse if the effects of the bug propagate to the en-
tire application and will fail to identify the first task(s) and
transitions that the bug impacted. We can overcome this dif-
ficulty by observing individual state transitions, lookingfor
the first that takes an unusual amount of time compared to
the transition behavior seen in sample runs or earlier phases.

If the faulty effects are temporary, AutomaDeD com-
putes the typical behavior of each SMM transition as a prob-
ability distribution (Gaussian or Histogram) of its observed
times in the sample runs or first phase, after discarding the
top and bottom 1% of the times. AutomaDeD uses these
distributions to compute the probability of observing the
time preceding each transition of the faulty phase. We then
identify low probability transitions through K-Means clus-
tering withK = 2, using the log of the probability to im-
prove sensitivity to low values. We select the earliest low
probability transition as the CT, which also identifies the
faulty task. AutomaDeD can also present later low proba-
bility transitions on other tasks in case the starting timesof
the transitions do not correctly identify the CT.

If the faulty effects are permanent, AutomaDeD looks
for a sudden change from one type of application behav-
ior to another. Specifically, it scans each transitiont in
each task SMMM to locate the largest increase inθ =
stdDev(t) ∗ ν, wherestdDev(t) is the standard deviation
in the observed times precedingt. When sample runs are
provided,ν = 1

ν
, whereν is the noise weighting factor dis-

cussed in Section 3.3. Otherwise,ν = stdDev(t), which is
another way to reduce the algorithm’s sensitivity to outliers.

θ measures the variation of the transition, which in-
creases significantly when its behavior changes, as its prior
behavior does not predict its new behavior well. Au-
tomaDeD selects the transition that provides the best bal-
ance between occurring before other transitions and having
a high θ. This is done by comparing transitionst and t′

using to the following relation:

(tts, θ) � (t′ts, θ) ≡

{

θ ∗ (1 + t′ts − tts) > θ′ if tts < t′ts
θ′ ∗ (1 + tts − t′ts) > θ if t′ts < tts

wheretts andt′ts are the timestamps oft andt′. Thus, we
considert a better choice (ordered larger) thant′ if either it
has an earlier timestamp andθ is larger thanθ′ after being

Figure 5. Output format of AutomaDeD after the debug-
ging process is completed.

adjusted by a factor that proportionally compensates for the
difference in their timestamps or it has a later timestamp
andθ is larger despiteθ′ being inflated by the same factor.

4.5 Visualization of Results

AutomaDeD presents the cluster and transition isolation
results through the clustered SMMs of the faulty phase, fo-
cusing on the faulty cluster and the CT. Figure 5 shows an
example of the output for a 9 task NAS benchmark BT when
a 10 second delay was injected into task 6 before execution
of the selectedMPI Isend (we show only a portion of the
SMM). Bold edges indicate the CTs; the clusters appear as
their labels. The cluster associated with the edge (Compu-
tation, Isend-DOUBLE) corresponds to the faulty cluster.

5 Experimental Evaluation

5.1 Fault Injection Types

We empirically evaluate the effectiveness of Au-
tomaDeD by injecting synthetic faults into six applications
in the NAS Parallel Benchmark suite: BT, CG, FT, MG,
LU and SP [5]. We omitted EP because it performs almost
no MPI communication and IS because it uses MPI in only
a few locations in the code, making MPI-based state de-
marcation inappropriate. Our fault injector, built on top of
PNMPI, dynamically injects a wide array of software faults
at random MPI calls during MPI application runs. It sup-
ports three main classes of faults:

• Local livelock/deadlock or transient stall; emulated via
a finite loop of 1, 5 or 10 seconds (FIN LOOP) or an
infinite loop (INF LOOP)

• MPI message loss and duplication; emulated by drop-
ping (DROP MESG) or repeating (REP MESG) a single

6

MPI message,

• Extra CPU- or Memory-intensive thread; emulated by
starting up a thread with a perpetual-increment loop
(CPU THR) or a loop that randomly reads from/writes
to a 1GB region of memory (MEM THR), that interfere
with the remainder of the application’s execution.

Our experiments ran each benchmark with input size
A and 16 tasks. We executed all tasks on four-socket,
quad-core nodes (the Hera cluster at LLNL), with 2.3Ghz
Opteron processors and 32GB RAM per node. We injected
each fault type into a random task and MPI operation type
(Blocking and Non-Blocking Sends and Receives, All-to-
Alls, etc.), ensuring that over the entire experiment, each
task and MPI operation type was injected with each fault
type. For each case, we performed at least 10 random in-
jection runs, totaling approximately 2,000 injection experi-
ments per application. In each run we injected a single fault
into a random instance of the target operation type on a ran-
dom task. The execution of each application was partitioned
into approximately 5 phases; the exact number depended on
the application’s original iteration count.

5.2 Results of Debugging Faults

We evaluate the accuracy of AutomaDeD in identifying
the following aspects of the injected fault:

• The phase with the injected fault (faulty phase)

• The cluster that contains the task with the injected fault
(cluster isolation)

• The error site of the injected fault (transition isolation)

We evaluate AutomaDeD with and without sample runs.
Using sample runs corresponds to when the developer can
execute an application multiple times to establish its nor-
mal behavior before analyzing a given faulty run. We eval-
uate two types of sample runs. For each applicationA
the FaultFree(A) set consists of 20 runs with no in-
jected faults, which models an ideal set of sample runs. The
Fault10(A, F) set includesFaultFree(A) as well
as 2 additional runs ofA in which faultF was injected. This
set models the more common case where application runs
are affected by an infrequent non-deterministic bug that af-
fects a certain fraction of runs (in this case∼10%). Our ex-
periments that do not use sample runs, denotedNoSample,
omit any runs in which faults were injected during the
first phase in order to ensure a more informative evalua-
tion. We also omit such runs when analyzingCPU THR and
MEM THR faults, regardless of whether or not sample runs
are provided, since they provide no information about the
application’s behavior before the fault.

5.2.1 Detection of the Faulty Phase

We begin by evaluating AutomaDeD’s ability to detect the
phase in which the fault was injected. If AutomaDeD does
not have sample runs, the algorithm identifies the phase that
is most different from the others using either the cluster-
based metric or the individual task SMM-based metric. If
it has sample runs, AutomaDeD use one of these metrics to
determine the phase that is most different from its counter-
part in those sample runs.

Figure 6 shows the average accuracy over all applica-
tions of faulty phase detection. All of our graphs show
the runs on the Y-axis in which AutomaDeD identifies the
phase, cluster or transition relevant to the injected fault.
The data series correspond to using the two metrics with
each sample run configuration (FaultFree, Fault10
and NoSample) and the different distribution methods
used for the times preceding transitions (Gaussian and
Histogram).

We observe that the SMM-based metric detects faulty
phases more accurately than the cluster-based one, with
detection accuracy over 90% for most fault types. How-
ever, the cluster-based metric better detectsCPU THR and
MEM THR when sample runs are available. In general,
sample runs significantly improve faulty phase detection
accuracy, withFaultFree andFault10 generally ex-
ceedingNoSample by 20%-30%. The difference is even
larger forCPU THR andMEM THR. Further,FaultFree
andFault10 sample runs provide similar accuracy, which
suggests that moderate noise levels do not impact the SMM
representation and AutomaDeD’s analyses significantly. Fi-
nally, SMMs based onHistograms produce consistently
more accurate (by several percent) phase detection results
than those based onGaussian probability distributions
because they are less sensitive to noise such as outliers. We
observe similar trends for cluster and transition isolation.

Figure 7 shows faulty phase detection accuracy on a per-
application basis, focusing on SMMs that useHistogram.
The data shows that detection accuracy depends strongly on
the application. Further, the SMM-based metric has poorer
accuracy withCPU THR andMEM THR primarily due to its
poor results on MG, BT and SP, while it provides higher
accuracy for FT than does the cluster-based metric. The
SMM-based metric is more accurate for other faults because
it performs more consistently across the applications. Fi-
nally, sample runs are essential for the cluster-based metric
while the SMM-based metric still provides reasonable ac-
curacy on the other fault types without them.

5.2.2 Cluster Isolation

Once AutomaDeD identifies the faulty phase, its cluster iso-
lation can help locate the root cause of the bug by showing
the cluster that contains the task where the bug was injected.

7

0%

20%

40%

60%

80%

100%

SMM Difference

0%

20%

40%

60%

80%

100%

Clustering Difference

Fault10 - Gauss

Fault10 - Histogram

NoFault -Gauss

NoFault -Histogram

NoSample -Gauss

NoSample -Histogram

Figure 6. Average faulty phase detection accuracy

0%

20%

40%

60%

80%

100%

SMM Difference, Fault10

0%

20%

40%

60%

80%

100%
SMM Difference, NoSample

0%

20%

40%

60%

80%

100%

Clustering Difference, Fault10

0%

20%

40%

60%

80%

100%

Clustering Difference, NoSample

BT

CG

FT

LU

MG

SP

Figure 7. Faulty phase accuracy per application

AutomaDeD again uses the SMM-based and cluster-based
metrics to perform cluster isolation. Alternatively, it can
examine the individual transitions within the faulty phaseto
identify those that are unlikely given the probability distri-
bution on the transition. Our evaluation measures the accu-
racy of AutomaDeD’s cluster isolation separately from that
of its faulty phase detection by always applying the tech-
niques to the faulty phase, that is we assume the phase de-
tection was accurate.

Figure 8 shows the accuracy of AutomaDeD’s cluster
isolation on a per-application basis, focusing on SMMs that
useHistogram. Cluster isolation using the cluster-based
metric has poor accuracy for nearly all applications and
fault types. The other options produce significantly better
results. The abnormal transition method without sample
runs and the SMM-based metric with sample runs provide
the best accuracy forCPU THR andMEM THR, with near

perfect results on half the applications. The abnormal tran-
sition method achieves high accuracy for theFIN LOOP
andINF LOOP using sample runs.

In general, the accuracy of cluster isolation varies widely
across the applications for the same fault type since the
faults can propagate themselves quickly from one task to
another. Thus, some task(s) other than the faulty task may
exhibit behavior the most divergent from its normal activity,
which can cause the cluster-based and SMM-based metrics
to mis-identify them as the source of the fault. While task
behavior does not confuse the abnormal transition method,
it can perform poorly due to the relatively coarse granularity
of SMM transitions. As such, a fault may propagate from a
transition with a later starting timestamp to one that began
earlier, causing the wrong transition to be identified as the
fault’s first manifestation. We could reduce this effect by
breaking long states into smaller ones, which will improve
their precision.

Figure 9 shows the percentage of runs (using the
Fault10 sample run configuration) in which the faulty
task cluster consists of only one faulty task. Precisely iden-
tifying the faulty makes significantly easier for developer
to identify the bug since narrows it down to a single task’s
control and data flow. AutomaDeD fully isolates the faulty
task in more than 90% of the cases forCPU THR,MEM THR,
DROP MESG andREP MESG and 70% forFIN LOOP and
INF LOOP. In contrast to prior results, usingGaussian
distributions for the times preceding transitions provides
greater accuracy because they are more sensitive to outliers,
which suggests that both probability distributions shouldbe
used in practice.

5.2.3 Transition Isolation

AutomaDeD uses two algorithms for transition isolation.
First, it compares the SMMs of the faulty cluster to those
of other clusters and selects the transitions most responsi-
ble for the differences. Alternatively, it selects the earliest
abnormal transition within the faulty cluster. Since our goal
is to focus debugging efforts, we consider how frequently
the faulty transition is the top choice or one of the top five
choices of these methods. Figure 10 shows the results, with
the clustering-based algorithm on the left and the transition-
based algorithm on the right.

The clustering-based algorithm consistently (≥ 90% of

8

0%

20%

40%

60%

80%

100%

SMM Difference, Fault10

0%

20%

40%

60%

80%

100%
Abnormal Transition - NoSample

0%

20%

40%

60%

80%

100%

Clustering Difference, Fault10

0%

20%

40%

60%

80%

100%

Abnormal Transition - Fault10

BT

CG

FT

LU

MG

SP

Figure 8. Cluster isolation accuracy per application

the time) includes the faulty transition in its top five choices
for FIN LOOP andINF LOOP. The transition-based algo-
rithm is less consistent across applications but when it suc-
ceeds, it usually does so with its first selection. Both meth-
ods exhibit low accuracy forDROP MESG andREP MESG
faults because their effects manifest long after the fault is in-
jected. They also perform relatively poorly withCPU THR
andMEM THR because these faults cause sudden behavioral
changes that resemble ordinary outlier transitions.

5.3 Case Study: MVAPICH Bug

We illustrate the utility of AutomaDeD via a case study
of applying it to a real bug in the MVAPICH-0.9.9 MPI im-
plementation [19]. The bug occurs in its MPI task launcher,
mpirun, which sometimes fails to clean up after an appli-
cation, leaving processes to run concurrently with subse-
quent jobs. We evaluated AutomaDeD on this bug, which is
similar in effect to our CPU- and Memory-intensive thread
faults, by executing a 16- or 64-task run of as the applica-

0%

20%

40%

60%

80%

100%

Gaussian

Histogram

Figure 9. Isolation of a singleton cluster

tion being debugged while simultaneously executing a 16-
task run of either LU, MG or SP on the same set of nodes
as the previous runaway tasks). These experiments cover
the cases where runaway tasks interfere with either all or a
subset of the application’s tasks.

We provided AutomaDeD with a set of five sample runs
of BT with no interference. Figure 11 presents average the
SMM-based metric that AutomaDeD determines for each
phase of three runs where BT ran concurrently with either
LU, MG and SP (one set for 16-task and another for 64-
task BT runs) as well as the average score for the five no-
interference runs. The sets of sample runs used to com-
pute each no-interference run’s deviation scores excluded
the run itself. The deviation scores of all no-interference
phases were consistently low. In contrast, the scores of the
initial phases of the three interference runs show high devi-
ation scores, identifying the exact region of time when the
shorter runs of LU, MG and SP overlapped with the exe-
cution of BT. Further, AutomaDeD clearly shows that the
interferfence run of MG in one 16-task experiment began
after the first phase of BT, since the deviation score starts at
the baseline level, rises for three phases and then drops to
the baseline.

AutomaDeD significantly aids debugging. First, it
clearly identifies the performance anomaly, which might not
have been noticed for a long time or blamed on extraneous
factors such as network load or choice of input. Second, Au-
tomaDeD determines when the interference occurs, which
facilitates detection of the interference tasks from system
logs or other methods. Although AutomaDeD can often
identify the tasks most affected by the fault, it did not isolate
those tasks in this case since BT is tightly coupled, which
leads to the interference tasks impacting all of BT’s tasks
even with 64-task runs.

6 Prior Work

Traditional debugging techniques, including sequential
debuggers such as gdb and “printf debugging,” require
the user to identify coding errors and to trace their ori-
gins manually. Traditional parallel debuggers, such as To-
talView [23] and DDT [2], are similar, although these tools
must control multiple processes concurrently and aggregate

9

0%

20%

40%

60%

80%

100%

Clustering

0%

20%

40%

60%

80%

100%

Abnormal Transition BT - top 1

BT - top 5

CG - top 1

CG - top 5

FT - top 1

FT - top 5

LU - top 1

LU - top 5

MG - top 1

MG - top 5

SP - top 1

SP - top 5

Figure 10. Transition isolation accuracy per application

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1 2 3 4 5 6 7 8 9 10

S
M

M
 D

e
v

ia
ti

o
n

 S
co

re

Phase

16-process BT

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1 2 3 4 5 6 7 8 9 10

S
M

M
 D

e
v

ia
ti

o
n

 S
co

re

Phase

64-task BT

Average

No-Interference

Concurrent SP

Concurrent LU

Concurrent MG

Figure 11. Phase deviation scores of MVAPICH bug use-case

the distributed state. They provide convenient interfacesto
that state but the process of identifying errors remains man-
ual. Overall, traditional debugging techniques require a sig-
nificant amount of user experience, intuition, and time, and
thus are not practical for large, complex parallel applica-
tions.

Differential debugging provides a semi-automated ap-
proach to the analysis and understanding of programming
errors by comparing executions dynamically [1, 24]. Recent
research has focused on developing statistical techniquesto
pinpoint the root cause of correctness problems automati-
cally [3, 6, 8, 9]. While both approaches hold significant
promise, they require extensive runtime execution data of-
ten from multiple runs or extensions that guide the analy-
ses to the significant differences between the processes in
a single run. As a result, most techniques have not yet
been applied to large scale runs of parallel applications.
AutomaDeD complements these techniques by providing
mechanisms that relate the state across the individual pro-
cesses and group ones with similar behavior into task equiv-
alence classes.

Our previous work developed the Stack Trace Analysis
Tool (STAT) [4, 11], which provides scalable task equiva-
lence class detection based on the functions that the pro-
cesses execute. Specifically, STAT gathers stack traces
across tasks and over time and merges the traces into a call
graph prefix tree, from which it identifies task equivalence
classes. STAT’s stack trace analysis is useful for diagnosing
certain classes of errors. STAT can quickly identify when a
small subset of tasks has diverged from the rest of the ap-
plication. However, these classes can group processes when

their behaviors are distinct. For example, two processes can
exhibit the same stack trace despite having very divergent
timing characteristics and the timing characteristic of one
of the processes indicates that it is erroneous. Hence, Au-
tomaDeD considers extensions over function-based equiva-
lence classes through the use of SMMs with state transition
probabilities and timing distributions. Further, distinct from
prior work, we also drill down and identify the code region
that causes the divergence, thus providing a guidance to the
developer to look for errors.

Liu et al. present D3S, which provides users with a
model to write predicates on properties that they wish to
check at runtime [13]. The system provides a scalable
means to verify the properties, and tolerates failures of the
checking and the checked machines. The P2 monitor [22]
is similar in spirit to D3S—differences lie in the level of
automation in collecting distributed state and support for
legacy applications. All of this prior work differs from ours
in that they focus on detecting when a property gets vio-
lated, with the property being well understood and specified
by the user prior to execution while we do not require the
user to provide such knowledge.

We share similar goals to those of the work by Mirgorod-
skiy et al. [16], namely, locating the causes of anomalies in
parallel programs. Their model looks at the traces of func-
tion calls and exits and uses a distance metric to identify
the trace that is most different from other traces. Subse-
quently, they identify the function that most contributes to
the suspect score for the outlier trace in order to pinpoint
the likely source of the problem. Despite these similarities,
their work addresses a subset of the anomalies that we do in

10

AutomaDeD since they assume all processes have identical
behavior and they do not consider timing anomalies.

7 Conclusion

Large-scale application debugging is very challenging
because of the vast amount of information developers must
consider to identify a bug’s root cause. AutomaDeD fo-
cuses debugging efforts on the time period, tasks and code
region where the bug is first manifested. Thus, it signif-
icantly improves developer debugging productivity by re-
ducing the amount of information that must be considered
even as the application is scaled to large task counts. This
paper describes the fundamental approach and design of
AutomaDeD and establishes it as a valuable addition to
the developer’s toolkit. Our results demonstrate that Au-
tomaDeD is very accurate for key debugging tasks. In par-
ticular, it correctly identifies the faulty phase in 90% of our
trials for delays, hangs and message faults and in 70% of
our trials for interference faults. Given the faulty phase,Au-
tomaDeD’s accurately identifies a small task set (often a sin-
gle task) in which the bug occurred for over 80% of delays
and hangs, over 40% for message faults and over 70% for
interference faults. Given the faulty cluster, AutomaDeD
identifies the error site with 90% accuracy for delays and
hangs and 50% accuracy for interference faults.

While this paper demonstrates the utility of our ap-
proach, a key component of our ongoing work is to make
these ideas work at large scale. This includes developing
more efficient algorithms for our basic mechanisms such
as histograms and SMM comparisons, as well as scalable
methods to cluster SMMs on-line across millions of tasks.
While this work will leverage the algorithms presented here,
it will involve the development on novel statistical model-
ing techniques that can scale to millions of tasks. Another
important area will be extending AutomaDeD to model a
richer space of behaviors, including analyzing behavioral
metrics other than control flow and time as well as mod-
eling more complex applications. This work will enable
AutomaDeD to become a valuable debugging tool for de-
velopers of large scale applications that will make them sig-
nificantly more productive even as their applications scale
to ever more tasks.

References

[1] A BRAMSON, D., FOSTER, I., M ICHALAKES , J., AND SOCIČ R.
Relative Debugging: A New Methodology for Debugging Scientific
Appl ications.Communications of the ACM 39, 11 (1996), 69–77.

[2] A LLINEA SOFTWARE. Allinea DDT the Distributed Debugging
Tool.

[3] A NDRZEJEWSKI, D., MULHERN, A., L IBLIT , B., AND ZHU, X.
Statistical Debugging Using Latent Topic Models. In18th European
Conference on Machine Learning(Sept. 17–21 2007), S. Matwin and
D. Mladenic, Eds.

[4] A RNOLD, D. C., AHN, D. H., DE SUPINSKI, B. R., LEE, G. L.,
M ILLER , B. P.,AND SCHULZ, M. Stack Trace Analysis for Large
Scale Debugging. InThe International Parallel and Distributed Pro-
cessing Symposium(2007).

[5] BAILEY, D., BARTON, J., LASINSKI, T., AND SIMON , H. The NAS
Parallel Benchmarks. RNR-91-002, NASA Ames Research Center,
Aug. 1991.

[6] CHILIMBI , T., LIBLIT , B., MEHRA, K., NORI, A., AND VASWANI ,
K. HOLMES: Effective Statistical Debugging via Efficient Path Pro-
filing. In 31st International Conference on Software Engineering
(ICSE)(May 2009).

[7] FELDMAN , M. Lawrence Livermore Prepares for 20 Petaflop Blue
Gene/Q. InHPCwire(Feb. 2009).

[8] GAO, Q., QIN , F., AND PANDA , D. K. DMTracker: Finding Bugs
in Large-Scale Parallel Programs by Detecting Anomaly in Data
Movements. InACM/IEEE Supercomputing Conference (SC)(2007),
ACM, pp. 1–12.

[9] HANGAL , S., AND LAM , M. S. Tracking Down Software Bugs
Using Automatic Anomaly Detection. InICSE ’02: Proceedings of
the 24th International Conference on Sof tware Engineering(2002),
ACM, pp. 291–301.

[10] JAIN , A. K., MURTY, M. N., AND FLYNN , P. J. Data Clustering:
A Review. ACM Computing Surveys 31, 3 (1999), 264–323.

[11] LEE, G. L., AHN, D. H., ARNOLD, D. C., DE SUPINSKI, B. R.,
M ILLER , B. P.,AND SCHULZ, M. Benchmarking the Stack Trace
Analysis Tool for BlueGene/L. InInternational Conference on
Parallel Computing: Architectures, Algorithms and Applications
(ParCo)(2007).

[12] L INDEKUGEL, K., DIGIROLAMO , A., AND STANZIONE, D. Ar-
chitecture for an Offline Parallel Debugger. InInternational Sym-
posium on Parallel and Distributed Processing with Applications
(ISPA)(Dec 2008), pp. 227–235.

[13] L IU , X., GUO, Z., WANG, X., AND CHEN, F. D3S: Debugging De-
ployed Distributed Systems. InUSENIX Symposium on Networked
System Design and Implementation (NSDI)(2008), pp. 423–437.

[14] LOURENÇO, J.,AND CUNHA , J. C. Fiddle: A Flexible Distributed
Debugging Architecture. InInternational Conference on Computa-
tional Science (ICCS)-Part II(2001), Springer-Verlag, pp. 821–830.

[15] MANNING , C. D.,AND SCHTZE, H. Foundations of Statistical Nat-
ural Language Processing. Cambridge, Mass: MIT Press, 1999.

[16] M IRGORODSKIY, A., MARUYAMA , N., AND M ILLER , B. Problem
Diagnosis in Large-Scale Computing Environments. InACM/IEEE
Supercomputing Conference (SC)(2006), pp. 11–23.

[17] M IRKIN , B. G.Mathematical Classification and Clustering. Kluwer
Academic Press, 1996.

[18] MPIPLUGIN. MPI Plugin for KDevelop. http:
//sourceforge.net/projects/mpiplugin/.

[19] MVAPICH PROJECT. MVAPICH Discussion List.
http://mail.cse.ohio-state.edu/pipermail/
mvapich-discuss/2007-July/000932.html.

[20] SCHULZ, M., AND DE SUPINSKI, B. R. PNMPI Tools: A Whole
Lot Greater Than the Sum of Their Parts. InACM/IEEE Supercom-
puting Conference (SC)(2007), ACM, pp. 1–10.

[21] SILVERMAN , B. W. Density Estimation for Statistics and Data Anal-
ysis. Chapman & Hall, 1986.

[22] SINGH, A., MANIATIS , P., ROSCOE, T., AND DRUSCHEL, P. Us-
ing Queries for Distributed Monitoring and Forensics.Operating
Systems Review 40, 4 (2006), 389–402.

[23] TOTALV IEW TECHNOLOGIES. TotalView Debugger. http://
www.totalviewtech.com/productsTV.htm.

[24] WATSON, G., AND ABRAMSON, D. Relative Debugging for Data-
Parallel Programs: A ZPL Case Study.IEEE Concurrency 8, 4
(2000), 42–52.

11

